See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327839738

Species richness, phylogenetic and functional structure of bird communities in Chinese university campuses are associated with divergent variables

Article in Urban Ecosystems · September 2018 DOI: 10.1007/s11252-018-0803-5

Project

Plant-animal mutualistic networks in fragmented habitats View project

The nested subset pattern and underlying mechanisms of mammal assemblages in the Thousand Island Lake View project

Species richness, phylogenetic and functional structure of bird communities in Chinese university campuses are associated with divergent variables

Wenjing Zhang¹ · Chenxia Liang² · Jun Liu² · Xingfeng Si^{3,4,5} · Gang Feng²

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

University campus is an important component of urban landscapes for biodiversity conservation. However, to our knowledge no study has quantitatively assessed the diversity and structure of bird communities in Chinese university campuses, especially from phylogenetic and functional perspectives. Here, for the first time we linked species richness, phylogenetic structure and body mass structure of campus bird communities with contemporary climate, glacial-interglacial climate change, altitudinal range, population density around campus, area and age of campus to test their associations. We found 393 bird species in 38 university campuses (29% of all Chinese bird species, two species are endangered, four species are vulnerable, and 33 species are near threatened). The variables significantly correlated with campus bird species richness, phylogenetic structure and body mass structure were altitudinal range and mean annual precipitation, glacial-interglacial anomaly in temperature, and altitudinal range, respectively. In particular, there were more species in steeper and wetter campuses, more young species clustered in campuses with stable glacial-interglacial climate, and more species with smaller body size in steeper campuses. Our study highlights the importance of considering both phylogenetic and functional information for biodiversity conservation in urban ecosystems.

Keywords Altitudinal range \cdot Body mass \cdot Campus birds \cdot Species richness \cdot Glacial-interglacial climate change \cdot Phylogenetic structure \cdot Precipitation

Introduction

Biodiversity conservation in urban ecosystem is crucial, because urbanization has caused massive loss of biodiversity,

Wenjing Zhang and Chenxia Liang contributed equally to this work.

Gang Feng qaufenggang@163.com

¹ College of Life Sciences, Inner Mongolia University, Hohhot 010021, China

- ² Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
- ³ School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- ⁴ Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C 1A4, Canada
- ⁵ College of Life Sciences, Zhejiang University, Hangzhou 310058, China

and affected the relations between biodiversity and its associated variables (Aronson et al. 2014; Pautasso et al. 2011; Sol et al. 2017). Urbanization ratio in China has rapidly increased in the past decades, e.g., increasing from 36% in 2000 to 53% in 2013, and will be 60% in 2020 (Pan and Wei 2013). Meanwhile, China is the home to 35,112 native higher plant species, 1371 bird species and 673 mammal species (Jiang et al. 2015; Wang et al. 2015; Zheng 2011). Therefore, biodiversity conservation in Chinese urban ecosystem is particularly important.

Covering about 62,000 ha of urban areas, Chinese university campuses are important component of urban ecosystems (Wang 2010). For example, a recent study about plant diversity in 71 Chinese university campuses records 1565 woody and 1614 herbaceous species (Liu et al. 2017). In addition, they find species richness is mainly affected by anthropogenic factors, e.g., campus age and size, while species composition and leaf traits are mainly driven by climate variables, i.e., mean annual temperature (Liu et al. 2017).

Factors associated with urban bird diversity and community structure are also complex, including both natural and anthropogenic features, e.g., contemporary climate, topography, land cover, urban age and population density (Aronson et al. 2014; Gagné et al. 2016). For example, human population density in urban area is negatively correlated with breeding bird diversity in North America (Gagné et al. 2016). Recent urban developments with more remnant fragments harbor more bird species than non-vegetated areas (Barth et al. 2015). Solar radiation is a major driver of bird community composition in Swiss cities (Sattler et al. 2010).

However, most studies about urban bird communities mainly focused on the species diversity and composition, with few studies simultaneously addressing the phylogenetic and functional structure (Morelli et al. 2017). A multifaceted approach, i.e., combining taxonomic, phylogenetic and functional diversity, is needed for biodiversity conservation because they represent three divergent dimensions of biodiversity (Devictor et al. 2010; Monnet et al. 2014). Phylogenetic diversity could be used as a proxy for functional diversity, but more importantly, it represents the evolutionary history of biotic assemblages, which is crucial for conservation (Swenson 2013; Winter et al. 2013). Functional traits directly account the ecological differences among species, and are closely linked with ecosystem functioning (Naeem et al. 2012; Swenson 2013).

In this study, for the first time we associated species richness, phylogenetic structure and body mass structure of bird communities in Chinese university campuses with both natural (contemporary climate, glacial-interglacial climate change, altitudinal range) and anthropogenic variables (population density around campus, area and age of campus) to test their relationships. We aim to answer three questions: 1) how many bird species could be found in these campuses? 2) how about their threatened status? 3) are the three dimensions of bird diversity linked with different variables?

Materials and methods

Bird community data in campuses

We searched published papers about bird diversity in Chinese university campuses at xueshu.baidu.com (including databases of both Chinese and English journals). To check how many species could be found in these campuses, we included all papers (38 papers, Appendix 1) with bird species list surveyed in different seasons. To ensure sufficient sampling efforts of the surveys, we only included papers with bird species list (using only resident bird species) covering at least one year (four seasons, 22 papers) to assess the relationships between attributes of bird communities and associated variables. Threatened status of these birds was evaluated by a recent report (Jiang et al. 2016).

Phylogeny and body mass data

Bird phylogeny including 170 resident bird species from 22 selected papers was pruned from the global bird phylogeny (http://birdtree.org) under the option of "Hackett All Species: a set of 10000 trees with 9993 OTUs each" (Jetz et al. 2012). Five thousand pseudo-posterior distributions were sampled. The Maximum Clade Credibility tree was constructed using mean node heights by TreeAnnotator (version 1.8.2) of the BEAST package (Drummond and Rambaut 2007).

Body mass is one of the most informative traits of animals because it is directly linked with other attributes, e.g., trophic level, extinction vulnerability and resource utilization (Ding et al. 2013). Body mass data in this study was from published literature (Zhao 2001). A body mass dendrogram was constructed using "Euclidean" distance and "complete" clustering in "vegan" R package. We first generated a body mass Euclidean distance matrix of all species, and then applied hierarchical clustering analysis to this matrix to finally get the dendrogram of body mass (Appendix 2). This dendrogram is analogous to the phylogeny and was used for the functional structure analyses below.

Associated variables

Climate variables, i.e., mean annual temperature (MAT), mean annual precipitation (MAP), MAT in last glacial maximum (LGM), MAP in LGM, were downloaded from WorldClim database (Hijmans et al. 2005). The mean of Community Climate System Model version 3 (CCSM3) and Model for Interdisciplinary Research on Climate version 3.2 (MIROC 3.2) was used to represent climate variables in LGM. Anomaly in MAT/MAP was calculated as the contemporary MAT/MAP minus the LGM MAT/MAP. Age and area of campus were either compiled from the published papers or from the website of each university. Population density data was extracted from the History Database of the Global Environment (HYDE 3.1; Goldewijk et al. 2011). Altitudinal range data was downloaded from http://www.earthenv.org/DEM.html (Robinson et al. 2014). Because the resolution of altitudinal data is 90 m and the area of each campus varies a lot, we constructed round polygons for each campus according to their area, and then extracted the altitudinal range data in ArcGIS 10.3.

Statistics

Phylogenetic and functional structure was represented by Net Relatedness Index (NRI) (Webb et al. 2002), which is computed as:

$$NRI = -1 \times \frac{MPD_{obs} - meanMPD_{rnd}}{sdMPD_{rnd}}.$$

 MPD_{obs} is the observed mean pairwise distance (MPD) of birds in a campus, *meanMPD_{rnd}* is the mean MPD of the null models (shuffle distance matrix labels 999 times), and *sdMPDrnd* is the standard deviation of MPD of the null models. Positive NRI means birds in a campus are more closely related (or similar in body mass) than expected (i.e. clustered), while negative NRI means birds in a campus are more distantly related (or more divergent in body mass) than expected (i.e. over-dispersed) (Webb et al. 2002).

Species richness was log transformed to get normal distributed residuals. To compare the regression coefficients, all variables were standardized (standard deviation = 1 and mean = 0). Ordinary least squares (OLS) models were used to assess the relationships between species richness, phylogenetic structure, functional structure and each associated variable. To account spatial autocorrelation of residuals, simultaneous autoregressive (SAR) models were also implemented for the single-variable analyses.

To better understand the associations between phylogenetic structure, functional structure and each associated variable, we also calculated the standardized effect size of phylogenetic distance (SES.pd) and mean body mass of birds in each campus, and correlated them with each associated variable. SES.pd. is computed as:

$$SES.pd = \frac{PD_{obs} - meanPD_{rnd}}{sdPD_{rnd}},$$

where PD is the observed phylogenetic diversity of birds in a campus, $meanPD_{rnd}$ is the mean PD of the null models (shuffle distance matrix labels 999 times), and $sdPD_{rnd}$ is the standard deviation of PD of the null models. Positive SES.pd. indicates higher proportion of long branches (relative old species/lineages), while negative SES.pd. indicates higher proportion of short braches (relative young species/lineages)

Table 1 Relationships between campus bird species richness, phylogenetic structure (Phylo NRI), body mass structure (Mass NRI) and each associated variable by ordinary least squares (OLS) and simultaneous autoregressive (SAR) models. MAT and MAP is mean annual temperature and precipitation. Anom_{MAT} and Anom_{MAP} is the

(Forest et al. 2007). All analyses were conducted in R 3.3.0 (R Core Team 2016).

Results

We found 393 species in the 38 published papers, which is 29% of all Chinese bird species. In addition, two species (*Acrocephalus sorghophilus* and *Emberiza aureola*) are endangered, four species (*Turdus feae, Aquila chrysaetos, Prunella koslowi* and *Pitta nympha*) are vulnerable, and 33 species are near threatened (Appendix 3).

Single variable ordinary least squares (OLS) and simultaneous autoregressive (SAR) models showed similar patterns about the associations between campus bird species richness, phylogenetic structure, body mass structure and each associated variable (Table 1). The variables significantly correlated with bird species richness, phylogenetic structure and body mass structure were altitudinal range (positive) and mean annual precipitation (positive), anomaly in mean annual temperature (negative), and altitudinal range (positive), respectively (Table 1, Fig. 1).

Notably, we found that standardized phylogenetic diversity was negatively correlated with altitudinal range and tended to be positively correlated with anomaly in mean annual temperature (Table 2, P value = 0.08). Mean body mass was also negatively correlated with altitudinal range (Table 2).

Discussion

Around 29% of all Chinese bird species (393 species) were found in the 38 campuses, indicating university campuses play an important role in maintaining bird diversity in China. Notably, two species of them are endangered, four species are vulnerable, and 33 species are near threatened.

contemporary-Last Glacial Maximum anomaly in MAT and MAP. Range_{ALT} is altitudinal range. Coefficients (coef) and adjusted r^2 were given. The two highest r^2 in each column were in bold. *p < 0.05; **p < 0.01

	1	1										
	Species Richness			Phylo NRI			Mass NRI					
	Coef_ols	r^2_{ols}	Coef_sar	r ² _sar	Coef_ ols	r^2_{ols}	Coef_sar	r ² _sar	Coef_ ols	r^2_{ols}	Coef_sar	r ² _sar
MAT	0.29	0.04	0.19	0.09	0.13	0	-0.13	0.09	0.08	0	0.09	0.01
MAP	0.50	0.22*	0.52	0.26**	0.35	0.08	0.35	0.16	0.20	0	0.19	0.04
Anom _{MAT}	-0.38	0.10	-0.37	0.15	-0.57	0.30**	-0.56	0.41**	-0.21	0	-0.20	0.05
Anom _{MAP}	-0.21	0	-0.13	0.09	-0.14	0	-0.21	0.12	-0.13	0	-0.12	0.02
Range _{ALT}	0.63	0.37**	0.61	0.43**	0.37	0.09	0.29	0.15	0.49	0.20*	0.48	0.25**
Population	-0.34	0.07	-0.33	0.20	-0.12	0	-0.01	0.09	0	0	-0.01	0
Age	-0.06	0	-0.06	0.08	0.16	0	0.42	0.26^{*}	0.24	0.01	0.37	0.08
Area	0.15	0	0.21	0.12	-0.10	0	-0.09	0.09	-0.19	0	-0.22	0.05

Fig. 1 Scatter plots of campus bird species richness, phylogenetic structure (Phylo NRI) and body mass structure (Mass NRI) against their two most associated variables, which are mean annual precipitation (MAP) and altitudinal range (Range ALT) for species richness, glacial-interglacial anomaly in mean annual temperature (Anom MAT) and Range ALT for Phylo NRI, and Range ALT and Age of campus (Age) for Mass NRI. Linear regression fits and r² are given. p < 0.05; p < 0.01

We found altitudinal range was consistently one of the two variables most associated with species richness, phylogenetic

Table 2 Correlations between phylogenetic structure (Phylo NRI),body mass structure (Mass NRI), standardized phylogenetic diversity(SES.pd), mean body mass (Massmean) and each associated variable. Thetwo highest values for each column were in bold. *p < 0.05; **p < 0.01

-			-	-
	Phylo NRI	Mass NRI	SES.pd	Mass _{mean}
MAT	0.13	0.08	-0.19	-0.12
MAP	0.35	0.20	-0.38	-0.22
Anom _{MAT}	-0.57**	-0.21	0.38	0.28
Anom _{MAP}	-0.14	-0.13	0.35	0.15
Range _{ALT}	0.37	0.49 [*]	-0.49*	-0.43*
Population	-0.12	0	0.09	-0.05
Age	0.16	0.24	-0.39	-0.25
Area	-0.10	-0.19	-0.03	0.18

and functional structure, with mean annual precipitation, anomaly in mean annual temperature, and campus age being the other most associated variables for them, respectively.

Altitudinal range and species richness as well as community structure

High altitudinal range, as a proxy of large environmental heterogeneity, is widely associated with high bird species richness in natural ecosystems (Jetz and Rahbek 2002; Liang et al. 2018). This relationship between environmental heterogeneity and bird species richness is also tested in urban ecosystems. For example, bird species richness is higher in urban sites with heterogeneous land cover types in Chicago (Loss et al. 2009). Building heterogeneity in Paris is associated with abundance of omnivorous and tree nester species (Pellissier et al. 2012). Consistent with these studies, we also found a positive relationship between bird species richness and altitudinal range in Chinese university campuses.

In addition, we also found a significant relationship between altitudinal range and community structure measured by body mass. The cluster of smaller birds in campus with larger altitudinal range supports the textural discontinuity hypothesis, which assumes that small animals should be associated with a complex landscape texture, and large animals should be associated with a simple landscape texture (Holling 1992). A study in south-eastern Australia also finds more small birds in heterogeneous landscapes than in a relative uniform landscape (Fischer et al. 2008). Moreover, increasing species richness with environmental heterogeneity may result from species packing within communities, especially for the species richness of consumers in terms of the increase in resources (MacArthur 1972; Stevens et al. 2012).

Precipitation and species richness

Precipitation is an important factor influencing animal diversity gradient over most of the earth (Hawkins et al. 2003). And it is generally highly correlated with primary productivity, which may promote more bird species (van Rensburg et al. 2002). For example, bird species richness in South Africa is strongly associated with precipitation (van Rensburg et al. 2002). In Poland, precipitation is positively correlated with farmland (open habitat) bird species richness, while showing no relationship with forest bird species richness (Kosicki and Chylarecki 2012). Covering a large gradient of mean annual precipitation (585 mm – 1736 mm), our results also show an increase of bird species richness with more precipitation.

Glacial-interglacial climate change and phylogenetic structure

Present patterns of biodiversity distribution are determined by both contemporary climate and historical events (Hawkins et al. 2003; Lei et al. 2015). Notably, since speciation and extinction could be shaped by glacial-interglacial climate change, it could directly affect the phylogenetic structure of present communities (Jansson 2003; Price et al. 2000; Turgeon et al. 2005). Regions with stable climate would preserve paleoendemics and have divergent gene pools, which would favour the evolution of neoendemics (Jansson 2003). Moreover, diversification rate of birds in the past 50 million years (till the near present) has increased rapidly, especially in Asia, where inhabiting a high proportion of species from recent rapid radiations (Jetz et al. 2012). Consistent with these statements, our results show that campuses with stable historical climate have phylogenetic clustered communities, mainly composed of young bird species.

Effect of area, age and population density

In addition to those natural variables, other anthropogenic factors are also associated with urban bird species richness and community structure in previous studies (Devictor et al. 2007; Gagné et al. 2016; Hagen et al. 2017; Schütz and Schulze 2016). For example, human population density in urban area is negatively correlated with breeding bird diversity in North America (Gagné et al. 2016). Land cover changes driven by urbanization in French have strongly affected functional composition of bird communities, leading to functional homogenization (Devictor et al. 2007). However, our study did not show significant effects of these anthropogenic variables. One reason could be that our study region covers a large gradient of natural variables, i.e., contemporary climate, historical climate and altitudinal range, which are more important for large-scale biodiversity patterns. Although plant species richness in Chinese university campuses is correlated with campus area and age (Liu et al. 2017), birds may not be so sensitive to these anthropogenic variables as plants.

Summary

Being the first study about the patterns and drivers of Chinese campus bird communities, we find natural factors, i.e., altitudinal range, contemporary and historical climate, are generally more important than anthropogenic variables, i.e., population density, campus age and area. Notably, species richness, phylogenetic and functional community structure are shaped by divergent variables, indicating the importance of considering the three dimensions of biodiversity in urban biodiversity conservation.

Acknowledgements This work was supported by the Starting Funding for Scientific Research from Inner Mongolia University (21400-5165111) and the Inner Mongolia Grassland Talent (12000-12102228).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Appendix 1. Reference list of the 38 papers collected in our study

- Luo ZK, Niu JY, Li XY, Zhang WH, Meng LX. (2012) Avian biodiversity in campus of Kaili University, Guizhou province. Journal of Hubei University (Natural Science), 34:292–297.
- [2] Kou SQ, Yao ZY, Zhao XN, Liu YY. (2010) Bird diversity and habitat characteristics in campus of Northwest A&F University. Acta Agriculturae Boreali-occidentalis Sinica, 19:27–31.

- [3] Cao CL, Jiang B, Cao Y, Han BQ. (2012) Avian resources and diversity distribution in the campus of Yangtze Normal University. Hubei Agricultural Sciences, 51:4589–4591 + 4603.
- [4] Du TK, Zhang N, Gao C. (2014) Species composition and diversity of bird community in the campus of Ningxia University. Journal of Agricultural Sciences, 35:83–88.
- [5] Jiang AW, Yu JJ, Yang L, Liu WZ. (2009) A primary survey into avifauna on campus of Hechi University. Journal of Hechi University, 29:69–75.
- [6] Kou HH, Zhang CW, Li QJ, Gu BT, Wang S. (2016) The species diversity and seasonal dynamic changes of birds in Anhui Science and Technology University. Journal of Anhui Science and Technology University, 30:36–41.
- [7] Huang XH, Kong XK, Wu YS, Zhong FS, Peng N. (2014) Avian community structure and diversity of Jiaying University. Journal of Jiaying University (Natural Science), 32:82–86.
- [8] Chen SD, Guo KJ, Chen GY, Zhou CL. (2009) Investigation on bird diversity in campus of Sichuan Normal University. Journal of Anhui Agricultural Sciences, 37:7484–7486.
- [9] Han GB, Xue HQ, Yuan GH, Hao YH. (1996) Report on the composition of birds in the campus of Shanxi Agricultural University. Journal of Shanxi Agriculture University, 2:177–181 + 214.
- [10] Wu HL, Yang ZC, Jiang Y, Xia FY, Zhang SX. (2016) Study on diversity of birds community on the old town campus of Dali University. Journal of Dali University, 1:67–74.
- [11] Li SH, Liu JF, Lan SR, Wang WH. (2014) Diversity characteristics of bird species in campus of Fujian Agriculture and Forestry University. Wuyi Science Journal, 30:1–8.
- [12] Ren YH, Gao S, Kang MJ. (2013) Study of the avian diversity in the southern campus of Shandong Agricultural University. Journal of Shandong Agricultural University (Natural Science), 44:225–230.
- [13] Li SB, Li CM. (2014) Avian resources on the campus of Yangtze University. Journal of Yangtze University (Natural Science Edition), 11:45–49+67+7.
- [14] Zhao HP, Yu JF, Xiao BL, Gu YF. (2011) Initial investigation of birds in campus of Henan University. Journal of Biology, 28:43–45.
- [15] Liu CL, Cheng WK, Wang W, Wang RY, Ji CJ, Zhao C. (2010) Investigation of birds in campus of West Anhui University. Forest By-Product and Speciality in China, 6:68–71.
- [16] Liang ZA, Du J, Yu YL, Mao AF. (2008) Investigation of birds in campus of Nanyang Normal University. Journal of Nanyang Normal University, 7:59–62.
- [17] Tong FC, Xie ZS, Cui ZX. (2008) Primary investigation of birds in campus of South China Agricultural

University. Shandong Forestry Science and Technology, 1:42-45.

- [18] Cheng W, Yu WY, Zhou MX, Ren YH, Zhu J, Cao Y, Wu XW, Li ZH. (2011) Study on diversity of bird in Jiangning Higher Education Mega Center. Journal of Anhui Agricultural Sciences, 39:7807–7808.
- [19] Huang ZH, Liu B, Luo SX, Xiao YA, Long J, Chen PJ, Chen D, Xi ZF. (2006) Primary investigation of birds in campus of Jinggangshan University. Journal of Jinggangshan University (Natural Sciences), 27:13– 15+20.
- [20] Duan HS, Zhao XX. (2014) Investigation of common birds resources in Jianghan University. Journal Jianghan University (Natural Sciences Edition), 42:91–96.
- [21] Xie M, Song LR, He J, Huang YH, Ni QY. (2012) Bird community structure in campus of Sichuan Agricultural University, Yaan. Journal of Sichuan Agricultural University, 30:103–109.
- [22] Shen F, Li ST. (2014) Survey of the birds at Beijing Forestry University in winter. Journal of Green Science and Technology, 6:127–129.
- [23] Wu XH, Li YJ, Yang YZ, Gao RH. (2016) Study on the relationship between the bird diversity and the arrangement of gardon trees on campus. Forest Resources Management, 1:143–147.
- [24] Ye SY, Xia TQ, Guo SL. (2013) Primary report on summer birds in new campus of Henan Institute of Education. Journal of Henan Institute of Education (Natural Science Edition), 22:31–34.
- [25] Liu Y, Lei JY. (2003) Bird banding in fall at campus of Beijing Normal University. Sichuan Journal of Zoology, 22:88–90.
- [26] Liu YF, Wu YQ, Lian XP. (2011) Structure and diversity of bird community on campus of Weinan Teachers University. Journal of Anhui Agricultural Sciences, 39:3596–3597 + 3599.
- [27] Yan YF, Su D, Wang HQ. (2009) Investigation of autumn birds in campus of Shangqiu Teachers College. Journal of Shangqiu Teachers College, 25:104–108.
- [28] Tuo Y. (2011) Primary investigation of bird diversity in new campus of Yichun University. Journal of Yichun College, 33:108–111.
- [29] Qin ZF, Wang WL, Kong QH, Wang Y. (2012) Summer and spring bird species on Qinghai University campus. Journal of Qinghai University (Natural Science Edition), 30:81–84.
- [30] Yang F. (2005) A preliminary research of birds in Xinghu campus of Chongqing University of Arts and Sciences. Journal of Western Chongqing University (Nature Sciences Edition), 4:42–44.
- [31] Li JG, Du YW, Hao L. (2004) Investigation of birds in campus of Shaanxi Normal University. Journal of Shaanxi Normal University (Natural Science Edition), 32:82–85.

- [32] Yang YL, Wen YL, Lei S, Zhao LZ. (2007) Research on the population density of birds in garden city. Journal of Southwest University for Nationalities (Natural Science Edition), 33:333–336.
- [33] Li S, Zhang DF, Huang K, Cao S, Liu SL. (2010) Study of the avian community in Jiang'an campus of Sichuan University. Sichuan Journal of Zoology, 29:249–254.
- [34] Zhao HP, Zhang YG. (2007) Valuation and preliminary analysis of the avifauna in the campus of Southwest University. Journal of Southwest University (Natural Science Edition), 29:131–136.
- [35] Wen C, Han D, Li S, Shen XL, Chen W, Wang H, Zhu XJ, Xiao LY, Liu MQ, Lv Z. (2014) Community structure of

Appendix 2

birds at Yanyuan, Peking University. Acta Scientiarum Naturalium Universitatis Pekinensis, 50:416–428.

- [36] Wang G, Xu ZG, Wu L, Liao JX, Liu SS, Zhao YL. (2015) Preliminary research and study on bird diversity of Hunan City University in summer. Journal of Hunan City University (Natural Science), 24:98–101.
- [37] Yang CC, Liang W, Cai Y, Shi HT. (2009) Survey on the birds in Hainan Normal University in autumn and winter. Journal of Hainan Normal University (Natural Science), 22:67–69.
- [38] [38] Xia DX, He FY, Wu QM, Li X, Liu XW, Lei ZF, Enkaer Alalibieke. (2017) Avian community diversity on the campus of Northeast Forestry University. Chinese Journal of Wildlife, 38:258–264.

Fig. 2 The dendrogram of body mass

Appendix 3

Species name

Parus major

Threatened status

LC

LC LC

Table 3	Species	list o	f the	393	species	found	in	our	study,	with
threatened	status inf	ormat	on							

threatened status information	Upupa epops	
Species name	Threatened status	Dicrurus macrocercus
Acrocephalus sorghophilus	EN	Gallinula chloropus
Emberiza aureola	EN	Lopnona migratoria
Turdus feae	VU	Amaurornis akool
Aquila chrysaetos	VU	Lanius cristatus
Prunella koslowi	VU	Acrocephalus aedon
Pitta nympha	VU	Charadrius alexandrinus
Tircus evaneus	NT	Phasianus colchicus
cciniter gentilis	NT	Emberiza elegans
Pandion haliaetus	NT	Phylloscopus inornatus
anaion nanaens Pernis ntilorhyneus	NT	Emberiza chrysophrys
aleo amuransis	NT	Phylloscopus proregulus
anco unurensis	NT	Sturnus cineraceus
utastur indiaus	IN I NT	Emberiza spodocephala
uusiur inaicus	IN I NT	Cyanopica cyanus
ocusiella lanceolata	IN I NT	Streptopelia tranquebaric
erpsiphone paradisi	NI	Phylloscopus borealis
ygnus columbianus	NI	Hirundo rustica
inox scutulata	NT	Carduelis sinica
alco peregrinus	NT	Charadrius dubius
ix galericulata	NT	Spizixos semitorques
mberiza tristrami	NT	Passer montanus
ccipiter trivirgatus	NT	Alcedo atthis
arpactes erythrocephalus	NT	Tringa nebularia
ophona personata	NT	Emberiza cioides
ydrophasianus chirurgus	NT	Streptopelia orientalis
alco vespertinus	NT	Sturnus sericeus
ubo bubo	NT	Cuculus micropterus
sio flammeus	NT	Pica pica
arrulax canorus	NT	Emberiza pusilla
vthya nyroca	NT	Alauda gulgula
haradrius placidus	NT	Corvus corone
pidorhyncha struthersii	NT	Fringilla montifringilla
itta villosa	NT	Lanius schach
latalea leucorodia	NT	Coturnix japonica
Imberiza yessoensis	NT	Delichon urbicum
^I umenius arquata	NT	Egretta garzetta
Chrysolophus pictus	NT	Zoothera sibirica
uteo lagopus	NT	Turdus obscurus
arduelis thibetana	NT	Amaurornis nhoenicurus
erodramus brevirostris	NT	Turdus muninonsis
cridotheres cristatellus	LC	Ardea cinerea
'ycnonotus sinensis	LC	Ardeola bacebus
urdus naumanni	LC	Tadoma famusinos
Phoenicurus auroreus	LC	Comus daurrieus
Dendrocopos major	LC	Convus macrorhumsh
Luculus canorus	LC	Corvus macrornynchos
	= -	keguius regulus

Table 3 (continued)

Table 3	(continued)
	(*********

Species name	Threatened status	Species name	Threatened status
Phylloscopus tenellipes	LC	Rhopophilus pekinensis	LC
Phylloscopus humei	LC	Gallinago gallinago	LC
Acrocephalus arundinaceus	LC	Garrulus glandarius	LC
Dicrurus hottentottus	LC	Bombycilla garrulus	LC
Phylloscopus reguloides	LC	Phylloscopus magnirostris	LC
Megaceryle lugubris	LC	Cuculus poliocephalus	LC
Phylloscopus fuscatus	LC	Locustella certhiola	LC
Turdus ruficollis	LC	Tachybaptus ruficollis	LC
Acrocephalus bistrigiceps	LC	Bombycilla japonica	LC
Oriolus chinensis	LC	Certhia familiaris	LC
Luscinia calliope	LC	Riparia riparia	LC
Otus scops	LC	Falco subbuteo	LC
Falco tinnunculus	LC	Nycticorax nycticorax	LC
Luscinia sibilans	LC	Aegithalos caudatus	LC
Tarsiger cyanurus	LC	Cuculus sparverioides	LC
Zosterops erythropleurus	LC	Phylloscopus yunnanensis	LC
Urocissa erythrorhyncha	LC	Alauda arvensis	LC
Zoothera dauma	LC	Asio otus	LC
Parus venustulus	LC	Pericrocotus ethologus	LC
Turnix tanki	LC	Parus palustris	LC
Ixobrvchus sinensis	LC	Gallinago stenura	LC
Streptopelia decaocto	LC	Ixobrychus eurhythmus	LC
Turdus hortulorum	LC	Phylloscopus armandii	
Pericrocotus cantonensis	LC	Cisticola iuncidis	LC
Picus canus	LC	Paradoxornis webbianus	LC
Actitis hypoleucos	LC	Athene noctua	
Tradadytes tradadytes	LC	Monticola gularis	
Phylloscopus schwarzi	LC	Muscicana griseisticta	LC
Halevon nileata		Museicapa sibirica	
Luscinia svecica	LC	Muscicapa danurica	
Ixobrychus cinnamomeus	LC	Ficedula zanthonygia	LC
Urosphena savameicens	LC	Ficedula narcissina	
Anas crecca		Ficedula albicilla	
Rutorides striata		Dendronanthus indicus	
Anas platirhinchos		Motacilla flava	
Parus ater		Motacilla citreola	
Phylloscopus coronatus		Motacilla cinerea	
Rubulcus ihis		Anthus hodasoni	
Erithacus rubecula		Anthus austavi	
Butao hutao		Aninus gusiuvi Primalla montanalla	
		Fringilla andabs	
Apus apus Pallus aquaticus		Cardualis flammag	
Caprimulaus indicus		Carmodaeus anthrinus	
Seelongy musticola		Carpodacus roscus	
Accipitar visus		Cardualis spirus	
Consuchus saularis		Embariza laugogenhalog	
Copsychus saularis Cattia diphona		Emberiza reucocepnaios Emberiza rutila	
Accipitar gularis		Emberiza ruma	
Europher guaris		Dou drosopog ogni ami i ""	
Eurysiomus orientalis	LU	Denarocopos canicapilius	LU

Threatened status

LC LC

Table 3 (continued)

Table 3	(continued)

Species name	Threatened status	Species name		
Dendrocopos hvpervthrus	IC			
Loxia curvirostra	LC	Rhvacornis fuliginosa		
Delichon dasvnus	LC	Lanius tiorinus		
Pvcnonotus xanthorrhous	LC	Anthus rubescens		
Pvcnonotus aurigaster	LC	Rambusicola thoracicus		
Lanius tenhronotus	LC	Minla cvanourontera		
Dicrurus leucophaeus	LC	Cettia fortines		
Acridotheres tristis	LC	Cacomantis merulinus		
Prunella stronhiata	LC	Tringa ochronus		
Primella immaculata	LC	Dicagum concolor		
Tarsiger indicus	LC	Melonhus lathami		
Phoenicurus hodasoni	LC	Cvornis hainanus		
Phoenicurus frontalis	LC	Motacilla alba		
Pomatorhinus ervthrocnemis	LC	Prinia atrogularis		
Garrular sannio	LC	Hypothymis azurea		
Heterophasia annecteus	LC	Alcinne morrisonia		
Heterophasia malanolauca		Prinia hodasonii		
Vuhina diadamata		Callivallus striatus		
Yuhing ogginitalis		Gantranus strianus Montigola solitarius		
Paradoxomia auttaticollia		Coomic hannumas		
Phylloscopus pulcher		Cyornis bunyumus Turdus cardis		
Prinia flavivantris		Contropus hongolonsis		
Niltava davidi		Acrocanhalus stantoraus		
Niltava sundara		Acrocephanus suenoreus		
Fumias thalassinus		Dicagum cruantatum		
Culicicana caylonansis		Dicueum crueniaium Pomatorhimus ruficollis		
Parus monticolus		Ardea purpurea		
Aggithalog conginnus		Araeu purpurea Storma himudo		
Acgunatos conclinus		Commus fragilagus		
Aegunaios iouscrisios		Lanius sphenocercus		
Passon mutilans		Cuculus microntorus		
Carduelis ambiana		Cardualis agriculis		
		Calumba livia		
Lopnura nycinemera		Columba livia		
Lonchurg strigts		Lanius bucepnatus		
Clausidium augulaidag		Corucina metascristos		
Longhura punctulata		Turaus pantaus		
Comela mudia		Hemixos casunonolus Turdus houlhoud		
A otherway christings		Turaus douidoui Bariana actus flammaus		
Chloropsia hardwishii		Humpington louse controlus		
Contropped ain angia		Hypsipeles leucocephalus		
Centropus sinensis		Anas poecuornyncha		
Frinta inornala		Recurvirosira avosetta		
Garrulax perspiciliatus		roaiceps cristaius		
rycnonotus jocosus		vaneilus vaneilus		
Dicaeum Ignipectus		Iringa erytnropus		
rorzana pusula		Larus riaibunaus Vanallus cincumus		
Nyopnonus caeruleus		vanenus cinereus		
		Aninus spinoiena		
11cnodroma muraria	LC	Unidonias hybrida		

Table 3 (continued)

Table 3	(continued)
Tuble 5	(continued)

Species name	Threatened status	Species name		
Calidris subminuta	LC	Prinia polychroa		
Botaurus stellaris	LC	Parus rubidiventris		
Anthus cervinus	LC	Hypsipetes mcclellandii		
Anthus sylvanus	LC	Accipiter virgatus		
Milvus migrans	LC	Enicurus scouleri		
Heteroscelus brevipes	LC	Seicercus burkii		
Anthus richardi	LC	Centropus sinensis		
Phylloscopus trochiloides	LC	Hemixos flavala		
Glaucidium brodiei	LC	Dendrocitta formosae		
Galerida cristata	LC	Anser albifrons		
Fulica atra	LC	Picumnus innominatus		
Parus montanus	LC	Acrocephalus agricola		
Passer ammodendri	LC	Anser fabalis		
Larus crassirostris	LC	Calidris alpina		
Lanius excubitor	LC	Anser anser		
Eremophila alpestris	LC	Latoucheornis siemsseni		
Oenanthe deserti	LC	Seicercus castaniceps		
Emberiza rustica	LC	Tringa glareola		
Emberiza pallasi	LC	Acridotheres grandis		
Columba rupestris	LC	Turdus merula		
Phoenicurus ochruros	LC	Gallicrex cinerea		
Cuculus saturatus	LC	Hirundo rustica		
Corvus monedula	LC	Lanius cristatus		
Phoenicurus erythrogastrus	LC	Pica pica		
Apus pacificus	LC	Ficedula zanthopygia		
Chaimarrornis leucocephalus	LC	Phylloscopus borealis		
Rostratula benghalensis	LC	Regulus regulus		
Ardea cinerea	LC	Streptopelia capicola		
Anas strepera	LC	Bradypterus davidi		
Aythya fuligula	LC	Sturnus sturninus		
Phylloscopus affinis	LC	Hirundo daurica		
Phylloscopus maculipennis	LC	Otus bakkamoena		
Saxicola ferreus	LC	Stigmatopelia chinensis		
Passer domesticus	LC	Saxicola torquatus		
Phalacrocorax carbo	LC	Prinia subflava		
Egretta garzetta	LC	Sturnus nigricollis		
Phylloscopus subaffinis	LC	Nectarinia jugularis		
Cinclus pallasii	LC	Surniculus dicruroides		
Leiothrix lutea	LC	Apus affinis		
Paradoxornis alphonsianus	LC	Eudynamys scolopaceus		
Minla ignotincta	LC	Anthus richardi		
Abroscopus albogularis	LC	Gracupica nigricollis		
Babax lanceolatus	LC	Casmerodius albus		
Tringa totanus	LC	Mesophoyx intermedia		
Charadrius hiaticula	LC	Oenanthe hispanica		
Cettia acanthizoides	LC	Calandrella brachvdactvla		
Sitta europaea	LC	Calandrella cheleensis		
Nucifraga carvocatactes	LC	Garrulax elliotii		
Anthus roseatus	LC	Melopsittacus undulatus		
		1		

Threatened status

LC LC

Table 3 (continued)

Species name	Threatened state			
Enicurus immaculatus	LC			
Pomatorhinus erythrogenys	LC			
Ficedula parva	DD			
Himantopus himantopus	DD			
Columba janthina	DD			

References

- Aronson MFJ, Sorte FAL, Nilon CH et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. P Roy Soc B-Biol Sci 281:20133330
- Barth BJ, FitzGibbon SI, Wilson RS (2015) New urban developments that retain more remnant trees have greater bird diversity. Landsc Urban Plan 136:122–129
- Devictor V, Julliard R, Couvet D et al (2007) Functional homogenization effect of urbanization on bird communities. Conserv Biol 21:741– 751
- Devictor V, Mouillot D, Meynard C et al (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040
- Ding Z, Feeley KJ, Wang Y, Pakeman RJ, Ding P (2013) Patterns of bird functional diversity on land-bridge island fragments. J Anim Ecol 82:781–790
- Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
- Fischer J, Lindenmayer DB, Montague-Drake R (2008) The role of landscape texture in conservation biogeography: a case study on birds in South-Eastern Australia. Divers Distrib 14:38–46
- Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760
- Gagné SA, Sherman PJ, Singh KK, Meentemeyer RK (2016) The effect of human population size on the breeding bird diversity of urban regions. Biodivers Conserv 25:653–671
- Goldewijk KK, Beusen A, Drecht G et al (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86
- Hagen EO, Hagen O, Ibáñez-Álamo JD et al (2017) Impacts of urban areas and their characteristics on avian functional diversity. Front Ecol Evol 5:84
- Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978
- Holling CS (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62:447–502
- Jansson R (2003) Global patterns in endemism explained by past climatic change. P Roy Soc B-Biol Sci 270:583–590
- Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551
- Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

- Jiang ZG, Ma Y, Wu Y, Wang Y, Feng Z, Zhou K, Liu S, Luo Z, Li C (2015) China's mammalian diversity. Biodivers Sci 23:351–364 (in Chinese with English abstract)
- Jiang ZG, Jiang JP, Wang YZ et al (2016) Red list of China's vertebrates. Biodivers Sci 24:500–551 (in Chinese with English abstract)
- Kosicki JZ, Chylarecki P (2012) Effect of climate, topography and habitat on species-richness of breeding birds in Poland. Basic Appl Ecol 13: 475–483
- Lei F, Qu Y, Song G et al (2015) The potential drivers in forming avian biodiversity hotspots in the east Himalaya Mountains of Southwest China. Integr Zool 10:171–181
- Liang C, Feng G, Si X, Mao L, Yang G, Svenning JC, Yang J (2018) Bird species richness is associated with phylogenetic relatedness, plant species richness and altitudinal range in Inner Mongolia. Ecol and Evol 8:53–58
- Liu JJ, Yu MJ, Tomlinson K, Slik JWF (2017) Patterns and drivers of plant biodiversity in Chinese university campuses. Landsc Urban Plan 164:64–70
- Loss SR, Ruiz MO, Brawn JD (2009) Relationships between avian diversity, neighborhood age, income, and environmental characteristics of an urban landscape. Biol Conserv 142:2578–2585
- MacArthur RH (1972) Geographical ecology. Harper and Row, New York
- Monnet AC, Jiguet F, Meynard CN, Mouillot D, Mouquet N, Thuiller W, Devictor V (2014) Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Glob Ecol Biogeogr 23:780–788
- Morelli F, Benedetti Y, Su T, Zhou B, Moravec D, Šímová P, Liang W (2017) Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing's urban parks: effects of land use and vegetation structure. Urban For Urban Green 23:84–92
- Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406
- Pan JH, Wei HK (2013) Blue Book of Cities in China: Annual Report on Urban Development of China No.6 (in Chinese). Social Sciences Academic Press, Beijing
- Pautasso M, Böhning-Gaese K, Clergeau P, Cueto VR, Dinetti M, Fernández-Juricic E, Kaisanlahti-Jokimäki ML, Jokimäki J, McKinney ML, Sodhi NS, Storch D, Tomialojc L, Weisberg PJ, Woinarski J, Fuller RA, Cantarello E (2011) Global macroecology of bird assemblages in urbanized and semi-natural ecosystems. Glob Ecol Biogeogr 20:426–436
- Pellissier V, Cohen M, Boulay A, Clergeau P (2012) Birds are also sensitive to landscape composition and configuration within the city Centre. Landsc Urban Plan 104:181–188
- Price T, Lovette IJ, Bermingham E, Gibbs HL, Richman AD (2000) The imprint of history on communities of north American and Asian warblers. Am Nat 156:354–367
- R Core Team (2016) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
- Robinson N, Regetz J, Guralnick RP (2014) EarthEnv-DEM90: a nearlyglobal, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J Photogramm Remote Sens 87:57–67
- Sattler T, Borcard D, Arlettaz R, Bontadina F, Legendre P, Obrist MK, Moretti M (2010) Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity. Ecology 91: 3343–3353
- Schütz C, Schulze CH (2016) Functional diversity of urban bird communities: effects of landscape composition, green space area and vegetation cover. Ecol Evol 5:5230–5239
- Sol D, Bartomeus I, González-Lagos C, Pavoine S (2017) Urbanisation and the loss of phylogenetic diversity in birds. Ecol Lett 20:721–729
- Stevens RD, Gavilanez MM, Tello JS, Ray DA (2012) Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. J Anim Ecol 81:455–462

- Swenson NG (2013) The assembly of tropical tree communities the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36:264–276
- Turgeon J, Stoks R, Thum RA, Brown JM, McPeek MA (2005) Simultaneous quaternary radiations of three damselfly clades across the Holarctic. Am Nat 165:E78–E107
- van Rensburg BJ, Chown SL, Gaston KJ (2002) Species richness, environmental correlates, and spatial scale: a test using south African birds. Am Nat 159:566–577
- Wang BW (2010) Great development does not necessarily mean great progress: some thoughts on the construction of campus buildings. Urbanism and Architecture 3:6–10 (in Chinese)
- Wang LS, Jia Y, Zhang XC, Qin H (2015) Overview of higher plant diversity in China. Biodivers Sci 23:217–224 (In Chinese with English abstract)
- Webb CO, Ackerly DD, McPeek MA et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505
- Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204
- Zhao Z (2001) A handbook of the birds of China. Jilin Science and Technology Press, Changchun (in Chinese)
- Zheng GM (2011) A checklist on the classification and distribution of the birds of China, 2nd edn. Science Press, Beijing (in Chinese)